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We describe the coupling of a cell-centered hydrodynamic scheme to a point-
centered finite element method simulating diffusive processes such as heat conduc-
tion and radiation transport. We also discuss procedures that compute the material
coefficients, the scheme advancing the radiation energy, and how to tally diffusion
boundary fluxes in sections with Dirichlet boundary data. To demonstrate the cou-
pling’s robustness and accuracy, we simulate the implosion of a radiatively driven
inertial confinement fusion capsule. The simulation, done on an unstructured, 3D,
tetrahedral grid, maintains spherical symmetry.c© 2001 Academic Press

1. INTRODUCTION

The development of codes to simulate inertial confinement fusion (ICF) experiments
is difficult because of the variety of equations which must be solved. At a minimum,
such codes solve the equations of compressible hydrodynamics, heat conduction, radiation
transport, laser energy deposition, and use equation-of-state (EOS) data for multiple real
materials. Typically, the codes consist of separate packages coupled by a controlling mod-
ule. This paper describes the coupling in one such code, ICF3D [1], in which the arbitrary
Lagrangian–Eulerian (ALE) hydrodynamics module [2] is based on cell-centered, discon-
tinuous finite elements (FE) while the heat conduction and radiation transport modules use
a conventional, point-centered, continuous, and piecewise differentiable FE scheme. It is
now widely accepted that cell-centered methods are the best choice to solve the equations
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of compressible hydrodynamics while, for diffusion equations, if the mesh is irregular
or unstructured, point-centered FE methods are superior. Thus, ICF3D mixes the two cen-
terings in order to avail itself of the best numerical methods for each package.

Since our approach is unconventional—traditionally cell-centered methods are employed
for both schemes—we first review the development of diffusion schemes for radiation–
hydrodynamic codes in order to motivate our preference for mixing the two approaches. In
the following synopsis we focus attention on “fully-implicit” differencing (except coeffi-
cients such as the conductivity are evaluated at the previous time level) since such differ-
encing is more robust [3]. There is additional incentive for such temporal discretization.
In applications such as radiation transport, the time step1t , when compared to the other
terms, is so large, that each time level effectively solves for the steady-state. Consequently,
in these cases, second-order, temporal differencing yields a worse answer.

Our exposition begins with Kershaw [3], who presents a method to discretize a diffu-
sion equation on a two-dimensional, logically orthogonal quadrilateral mesh in cylindrical
(R, Z) coordinates. Kershaw’s scheme solves for cell-centered unknowns, e.g., the aver-
age temperature inside the quadrilaterals. In the same paper, Kershaw lists the following
desirable properties of the matrix approximating the diffusion operator:

1. second-order (spatial) accuracy;
2. nonnegative definitiveness⇒ negative eigenvalues and numerical stability;
3. symmetricity⇒ energy conservation;
4. the M-matrix property⇒ positivity of the solution.

Kershaw shows that for general quadrilateral meshes the above conditions cannot always
be satisfied and he opts to sacrifice the last one.

Pert [4] extends Kershaw’s analysis by examining how properties of the diffusion equa-
tion apply to its discretization. He stresses that the matrix approximating the diffusion
operator should be nonnegative definite and recalls the fundamental property of diffusion
equations, that extrema decay in time. The latter property is shown to be satisfied for the
discretized system if the resulting matrix is an M-matrix and differential.

One unfortunate aspect of the Kershaw and Pert (K&P) schemes is a loss of accuracy
on sufficiently distorted grids. For example, even if the diffusion coefficient is constant,
and only the steady state solution is sought, and the exact solution is a linear function of
the coordinates, the K&P schemes do not reproduce it. This implies that ifu is a linear
function (and the grid is sufficiently distorted), the discretization of∇ · ∇u does not vanish.
To alleviate such errors, Shestakov, Harte, and Kershaw [5] propose to solve diffusion
equations using finite elements. This method brings many benefits (symmetric, differential,
conservative, positive definite linear systems, and for triangular or tetrahedral grids, an easy
means to guarantee the M-matrix property) but introduces the nontraditional approach of
point-centered unknowns.

Because of the difficulty in coupling point-centered diffusion to cell-centered hydro-
dynamics, cell-centered diffusion schemes continue to be developed. For example, Morel
et al. [6] propose a cell-centered diffusion scheme (MDHW) for quadrilateral (logically
orthogonal) grids which has two advantages over the K&P schemes: (1) Ifu is linear, the
discretization of∇ · ∇u does vanish and (2) the solution seems to converge with second-
order accuracy, regardless of the smoothness of the mesh. However, MDHW has the follow-
ing disadvantages: (1) In addition to the cell-centered unknowns, edge-centered unknowns
are introduced whichtriples the size of the linear system. (2) In general, the matrix is
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asymmetric. (3) For severely distorted meshes, the matrix is ill conditioned and although
this may be alleviated by a “parallelogram fixup,” the fix degrades the accuracy; the discrete
Laplacian no longer annihilates linear functions [6]. Moreover, it is not known whether the
MDHW discretization of the diffusion operator is negative definite. If not, the resulting
linear systems may be ill posed.

To put cell-centered discretizations on a sounder level, Shashkovet al., using the sup-
port operators (SO) method, propose a scheme for logically orthogonal quadrilateral grids
(Shashkov and Steinberg [7], Hymanet al.[8]). The SO scheme of Shashkov and Steinberg
(S&S) [7], has theoretical advantages over MDHW since it is based on a careful construction
of discrete operators that mimics the analogous properties of the differential operators. As a
result, the S&S discretization is symmetric, differential, conservative, and positive definite.
There are two variants of S&S which emanate from discretizing a diffusion equation in
“flux” form,

u− u0 = −1t∇ · f, f = −D∇u, (1)

where f is the flux andu0 denotes the old time level. The “temperature-based” option
substitutes the second equation into the first which yields a second-order equation foru.
Unfortunately, if solving on a nonorthogonal mesh, the S&S spatial differencing produces a
densematrix. Shashkov and Steinberg claim that this difficulty is overcome since in solving
for u, one often resorts to iterative methods which only require computing matrix–vector
products. However, we note that as an intermediate step, S&S computes a discrete vector,
the analogue of−D∇u, and this itself requires solving a banded linear system for the vector
components. The system couples components in both logical directions and has twice as
many unknowns as the scalar, cell-centered temperatures. Hence, this intermediate step is
a nontrivial computation.

Shashkov and Steinberg’s preferred, “flux-based” method to solve Eq. (1) is to substitute
the first equation into the second thereby obtaining a single system for the flux vector
components. Unfortunately, this variant makes tacit assumptions about the differentiability
of u0. The method definesf using a discrete analogue of the gradient,f = Gu

.= −D∇u
andappliesG to the first of Eq. (1) producing,

f +1tG(∇ · f) = Gu0. (2)

As a side note, since the “flux-based” method solves for vector components, in 2D, there
are twice as many unknowns as cells.

Shashkov and Steinberg present results on a number of test problems [7]. One in particular,
the “Random Mesh2 Example,” stands out since it was originally used by MDHW [6] as
proof of the lack of convergence of Kershaw’s scheme. Table I, which displays results
collected from [6] and [7], presents errors using both “relative”L2 and max norms—see
[6] and [7] for definitions. For comparison, Table I includes results obtained with our nodal
FE scheme.3

In [9], Morel, Roberts, and Shashkov (MRS) present a scheme that addresses the defi-
ciencies of the prior MDHW [6] and S&S [7] schemes, viz., an asymmetric and nonpositive

2 Figure 8 displays part of the mesh.
3 The “exact” S&S solution given in [7] is incompatible with the problem formulation. Our simulations use the

S&S boundary conditions and we compare with the correct solution.
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TABLE I

Errors on Random Mesh Problema

Nb K-L2
c M-L2

d S-L2
e F-L2

f M-maxg S-maxh F-maxi

10 1.3-2 1.5-2 1.59-2 1.88-3 4.36-2 4.34-2 1.03-2
20 5.1-3 3.8-3 4.06-3 4.31-4 1.04-2 1.05-2 2.48-3
40 8.4-3 9.6-4 1.00-3 1.04-4 3.43-3 3.18-3 1.17-3
80 1.1-2 2.4-4 — 2.81-5 — — 3.49-4

a See [6] and [7] for specification. Error format: K-L2 entry for N = 10 denotes 1.3 · 10−2.
b Denotes the number of mesh points in each coordinate direction.
c RelativeL2 norm error for Kershaw scheme (cited in [6]).
d RelativeL2 norm error for MDHW scheme [6].
e RelativeL2 norm error for S&S scheme [7].
f RelativeL2 norm error for our finite element (FE) scheme.
g Max norm error for MDHW scheme.
h Max norm error for S&S scheme (cited in [7]).
i Max norm error for FE scheme.

definitive linear system for MDHW and a dense system in the temperature-based variant for
S&S. The MRS proposal combines the support operator and the MDHW methodologies.
The resulting matrix is sparse and symmetric positive definite (SPD), allowing usage of
robust solvers such as preconditioned conjugate gradients (PCG). However, as in MDHW,
both face-centeredandcell-centered unknowns are introduced, which in 2D makes the sys-
tem sizeO(3N)whereN is the number of cells. In addition, one of the original MDHW and
S&S selling points is lost—on a skewed mesh, a linear steady solution is no longer repro-
duced. The MRS scheme seems to be second order and its accuracy is comparable to S&S.

To conclude the discussion of the MDHW and SO schemes [6–9], we note that their
extremal properties are unknown. Since nearly all of the published results are for steady
state problems, the issue of unphysical transients (negative temperatures) is unresolved. The
MDHW and SO schemes increase the number of unknowns; in 2D, the MDHW and MRS
schemes by three times while the flux-based SO schemes by two times. If the schemes
were extended to 3D meshes consisting of hexahedra, we expect the MDHW and MRS
schemes to increase the unknowns proportionally. Additionally, their extension to 3D may
not be trivial. Even if restricted to logically cubical grids, for inclusion in Lagrangian codes,
such schemes must be extended to cells with nonplanar faces.

Because of such difficulties, we favor finite element methods. Their suitability for diffu-
sion equations is unquestionable. The only reservation may be that they are point centered
and their incorporation into traditional cell-centered Lagrangian codes is delicate, but that
is one subject of this paper.

In Section 2, we describe the scheme coupling the cell-centered hydrodynamic scheme
[2] to point-centered methods used for the diffusion equations. Then, in Section 2.1 we apply
it to a test problem coupling hydrodynamics to diffusion. To complete a description of the
multiphysics code, Section 3.1 describes how we compute material properties such as the
thermal conductivity. Section 3.2 describes the scheme which advances the radiation energy
density. (Time advancement of the heat conduction module is similar and easier since only
one scalar equation appears.) The code applies conservative methods to equations written
in conservation form. During a run, an accounting is made of the existing energy, boundary
fluxes, sources, etc. Section 3.3 describes how we tally the boundary flux alongside points
with Dirichlet boundary conditions. Section 4 presents results on a problem coupling most
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of the physics packages. We simulate the implosion of a National Ignition Facility (NIF)
capsule driven with a uniform, steady 0.16 keV radiative source. Although the simulation
is spherically symmetric, we run it two ways—in 1D and 3D—in order to test the code’s
ability to maintain sphericity of the converging waves. Concluding remarks are given in
Section 5. The code advances the equations using operator splitting. The appendix motivates
our choice for the order in which the packages are called.

2. COUPLING PHYSICS MODULES

We denote the densities of mass, momentum, and total matter energy byρ, ρv, and
ρE. Other variables are the matter pressurep, internal energye, specific heatcv, radiation
energy densityEr , and the Planck and Rosseland averaged opacitiesκP andκR.

We now describe how the physics packages are coupled, paying special attention to
the reconciliation between changes due to cell-centered and point-centered schemes. The
code’s time cycle advances the physics packages in the following order:

1. hydrodynamics(ρ, ρv, ρE, p, e),
2. material properties(T, cv, κP, κR, . . .),
3. laser energy deposition(Se),
4. heat conduction(T),
5. radiation transport(Er , T),
6. synchronization(e, E, p).

In the above list, for each package, the parentheses enclose the comma-delimited entities
affected. The appendix describes why the packages are advanced in this particular order.

The variables linking the steps are the (matter) internal energye and the temperatureT .
The hydrodynamic module is inherently ALE, which implies that matter is advected across
cell faces. Step 2 transfers changes ine (due to the hydrodynamics) toT and computes
coefficients used in subsequent steps. Step 3 computesSe, a source of internal energy.
Steps 4 and 5 apply point-centered methods to diffusion equations forT and Er . Lastly,
step 6 distributes changes inT to e, E, andp. Hence, at the start of the next time step, the
fields are consistent, e.g., the energy (heat) deposited by the laser has been diffused and
coupled toEr , and the cells’ pressure is consistent with these changes.

The two fundamental variablese and T have different discrete representations. The
former is cell centered and the latter point centered. For the continuum analogues, their
changes are proportional to the specific heat,

1e= ∂e

∂T

∣∣∣∣
ρ

1T = cv1T,

which implies that changes inefrom steps 2–5 occur at fixedρ. MakingeandT fundamental
(permanent) variables means that they are realigned in steps 2 and 5 by transferring their
changesrather than computing one variable from the other. We elaborate on this below, but
note that this differs from a previous scheme [1] in which after the hydrodynamic step,T
was constructed frome.

We now describe the coupling scheme in more detail. First, we note that the code has two
hydrodynamic schemes, both cell centered; one is first order, another second order. For the
former, for variables such asρE andp, only cell averages are advanced. In the second-order
scheme,ρE and p are allowed to vary in the cell, which in tetrahedral cells is equivalent
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to giving variables such asρE a linear representation in terms of the coordinates.4 In both
schemes,e has only a cell-averaged representation, which is computed at the end of step 1
using

e= E − v2/2. (3)

This potentially problematic equation is the weak link of hydrodynamic schemes written
in terms of the total matter energy since there is no assurance that Eq. (3) yieldse≥ 0.
Negative energies may arise in test problems such as the one posed by Noh [10] in a region
where the fluid is cold and moving, i.e.,E ≈ v2/2. In such problems, as a shock passes, if
the shock jumps are only slightly in error, the code may compute an erroneous, negativee.
Presently, we avoid such cases by always initializing with small and positive temperatures.

In the following, we use subscriptsi andc to denote point- and cell-centered variables,
respectively, and superscripts to denote values obtained at the end of the various steps.
Thus,T (0)

i is the node-centered temperature at the start of the time cycle. Step 2 begins by
computing two cell-centered temperatures and a specific heat,

T (0)
c =

(∫
c
dV
∑

i

φi T
(0)

i

)/∫
c
dV, (4)

T (1)
c = T

(
ρ(1)c , p(1)c , f (1)c

)
, (5)

and cv =
∂e
(
ρ(1)c , p(1)c , f (1)c

)
∂T

∣∣∣∣∣
ρ

, (6)

where we explicitly note the EOS dependence on the mass fractionsf which are also ad-
vanced by the hydrodynamic scheme. Unless noted otherwise,cv is cell centered and con-
stant over the cell. Calculation of properties of material mixtures is described in Section 3.1.

Equations (4) and (5) define two temperatures whose difference

1T (2)
c = T (1)

c − T (0)
c

defines an energy change on the points

1ε
(2)
i =

∫
Ä

dV φi (x)(ρcv)c1T (2)
c .

The specific heatcv leads to a point heat capacity

Cv,i =
∫
Ä

dV φi (x) (ρcv)c,

which determines the nodal temperatureT (2)
i , the starting point for steps 3–5,

T (2)
i = T (0)

i +1ε(2)i

/
Cv,i . (7)

Since Eq. (7) may generate unphysical extrema,T (2)
i is min–maxed,5

T (2)
i = max

[
Tfloor, Ti,min,min

(
Ti,max, T

(2)
i

)]
,

4 The hydrodynamic variables are discontinuous across the cell faces.
5 Since onlyT is min–maxed, energy is conserved.
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whereTi,min andTi,max are formed fromT (0)
i and theT (1)

c of the surrounding cells, andTfloor
is a user-specified lower bound which depends on the problem. AfterT (2)

i is calculated,
step 2 computes other material properties.

OnceT (2)
i is known, steps 3–5 are straightforward. Step 3 supplies a (positive) energy

sourceSe which is diffused by step 4 yielding the intermediate temperatureT (4)
i . (There

is no need forT (3)
i .) Step 5 advancesT (4)

i by coupling it to the transport equation forEr

which yields the final temperatureT (5)
i .

The time cycle concludes with step 6 which transfers the nodal temperature change,

1T (6)
i = T (5)

i − T (2)
i , (8)

to the cells. In order to simplify the discussion, we first describe the procedure used to
couple to the first-order hydrodynamic scheme or when running problems in which the
hydrodynamic module is not used. The cell-centered analogue of Eq. (8),

1T (6)
c =

(∫
c
dV
∑

i

φi1T (6)
i

)/∫
c
dV,

defines the final internal and matter energies,

e(6)c = e(1)c + cv1T (6)
c ,

(ρE)(6)c = (ρE)(1)c + ρcv1T (6)
c .

(9)

The energye(6)c , densityρ, and the EOS define the final pressure,

p(6)c = p
(
ρc, e

(6)
c , fc

)
.

Equation (9) has no assurance of keepinge(6)c positive. If this ever happens, the code
prints a warning message, resets the energies to floor values, and continues. We have not yet
experienced such a failure and do not expect this to happen for the following reasons. First,
step 4 diffusesT , hence only points with relatively largeTi decay while those with small
values are increased. Thus, only relatively hot cells lose energy. In step 5,T is coupled toEr ,
and in Section 3.2 we prove that the coupling scheme limits the decrease ofT . Nevertheless,
if Eq. (9) yieldedec ≤ 0, resetting it to a floor value leads to an anomalous energy gain
which is monitored by the energy accounting functions called at the end of the run.

When coupling to the second-order ALE hydrodynamic scheme [2], we note that it
advances the total energy moments∫

c
dV φi (x)(ρE)(x). (10)

Hence, in addition to updatingec, (ρE)c, andpc, we add the energy changes to the moments
as follows. For each cell, we first obtain the cell-to-point centered energy densities(ρE)(1)c,i

by noting that

(ρE)(1)(x) =
∑

j

φ j (x) (ρE)(1)c, j .
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Multiplying this by a basis function and integrating yields a linear system for the energy
density,∫

c
dV φi (x) (ρE)(1)(x) =

∑
j

Mi j (ρE)(1)c, j , Mi, j =
∫

c
dV φi (x)φ j (x). (11)

The solution of these systems is fast since it only involves matrices of order equal to the
number of vertices of the cell, e.g., 4 in a tetrahedron. Once(ρE)(1)c,i is known, the final
values are given by

(ρE)(6)c,i = (ρE)(1)c,i + ρccv
(
T (5)

i − T (2)
i

)
. (12)

Multiplying by the mass matrix elementsMi, j gives the energy moments.
Once the total energy is known, the cell-to-point centered pressurespc,i , are obtained by

expanding the equation

e(p, ρ, f ) = (ρE)/ρ − v2/2

about the central values which yields an equation forpc,i in terms ofpc, ρc, ρc,i , etc. Lastly,
if any pc,i or any result of Eqs. (9) or (12) yields anomalously low values, all the point
values(ρE)c,i and pc,i within the cell are reset to the cell-averaged values(ρE)c and pc,
respectively, analogous to the Van Leer limiting procedure described in [2].

To summarize, the linchpins are the node-centered and continuousT and the cell-centered
e. We couple by mapping changes from one to the other. We conclude this section by
presenting results on a problem which stresses the coupling algorithm. The test simulates
a point explosion. Gas motion is governed by the hydrodynamic equations supplemented
with a diffusive flux of internal energy.

2.1. Point Explosion with Heat Conduction

Consider an ideal gas with constant specific heatcv, i.e.,

p = (γ − 1)ρe= (γ − 1)cv ρT.

Assume that the heat flux

H = −χ0 ρ
αTb∇T

whereχ0, a, andb are constants. The initial density satisfies

ρ|t=0 = g0r
κ ,

whereg0 andκ are constants. We simulate a point explosion by concentrating the initial
energy—all internal—at the center,

(ρE)t=0 = (ρe)t=0 = E0δ(r ).

Outside of the central region the gas is cold, i.e.,p = T = 0.
Reinicke and Meyer-ter-Vehn (RMV), who analyzed this problem in terms of similarity

variables [11], showed that ifκ = (1− 6b)/(2b− 2a+ 1), then the solution is self-similar
and the coupled system of PDEs can be reduced to a system of ODEs. The solution is
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characterized by a distinct shock and a distinct heat front. Depending on the magnitude of
a certain nondimensional parameter, the shock either precedes or follows the heat front. In
this section, to validate our point-to-cell coupling scheme, we first present a convergence
study of 1D spherical runs and compare our numerical results to integrations of the RMV
system of ODEs performed by Bolstad [12]. We then demonstrate that a 3D Cartesian
simulation gives similar results. For this problem, given a fixed resolution, the best results,
e.g., sharp shocks, are obtained running in pure Lagrangian mode. However, we present
results run in ALE mode in order to demonstrate the robustness of the coupling algorithm.

We use the same parameter settings introduced by RMV, i.e.,

γ = 5/4, cv = 1/(γ − 1), a = −2, b = 13/2, g0 = χ0 = 1,

and concentrate on a “largeE0” case in which the heat front radiusrh ≈ 2rs, wherers is the
shock radius. Hence, we set

E0 = 235.0.

Figure 1 displays results obtained from a 1D spherical simulation using 400 (initially
uniform) cells to discretize the domain 0≤ r ≤ 1. The ALE scheme moves the grid points
at half the Lagrangian speed. We normalize results to “exact” ODE integrations [12]. (The
normalizations in Fig. 1 are slightly erroneous—see Table II for corrections.) The figure
shows that the centralT and postshock velocityu agree nicely with the exact values while
max(ρ) is approximately 7% low.

Before quantifying the errors, we note that for this problem it is difficult to measure them.
Since the variables are discontinuous at either the shock or the heat front, a relativeL1 or

FIG. 1. Self-similar point explosion problem; 1D spherical simulation.
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TABLE II

Self-Similar Point Explosion Problem,E0 = 235.0

Na ρerr
b uerr

b Terr
c rs

d rh
e Tr=0

50 22.01 4.88 −1.607 0.417 0.920 4.2417
100 14.91 2.94 −0.345 0.435 0.920 4.1890
200 10.15 1.88 0.002 0.443 0.915 4.1747
400 6.63 1.17 0.053 0.447 0.915 4.1724

a Denotes number of cells.
b ferr = 100× (1− fcode/ fexact); compare atr = rs; ρexact= 45.774,uexact= 5.3925.
c Same asb, except compare atr = 0; Texact= 4.1746.
d Position of max(ρ).
e Largest radius withT > 1.

L2 error measure is inappropriate; numerical fronts are diffused over 1–3 mesh widths and
their position varies asO(h). Furthermore,ρ is especially difficult to approximate near
its maximum since it is nearly needle-like atr = rs. Indeed, the ODE integrations show
that att = 0.05145,dρ/dr ≈ 1014 behind the shock [12]. Thus, even if we only compare
maxima, we expect fairly large errors for max(ρ). On the other hand, in regions where the
solution is well behaved, e.g.,T(r = 0), the errors should be considerably smaller.

There are additional difficulties. First, although we specify a stop timets = 0.05145,
the simulations continue until the first cycle for which the running time exceedsts. Thus,
simulations with different mesh sizes do not halt at the same time. Secondly, it is difficult to
ensure that our simulations (in whichE0 = 235) match RMV’s or Bolstad’s since there is
no explicit relationship between the RMV nondimensional parameterβ0 andE0—see [11]
and [13]. Thirdly, we will examine convergence of max(ρ, u, T) and the positionsrs andrh.
For the analytical solution, the shock locationrs coincides with the location of max(ρ, u),
and the heat frontrh is at the outermost radius whereT > 0. However, since numerical
fronts are diffused, defining their position is subjective. In the following, we definers as
the location of max(ρ) andrh as the outermost radius whereT > 1. (The “cold” region is
initialized with a positive but smallT .) Furthermore, the locations of max(ρ) and max(u)
either colocate or are in adjoining cells. The main point is to have consistent definitions
and realize thatrs andrh may lag behind the correct values by 1–2 cell widths.

Results are summarized in Table II in which we display relative % errors in max(ρ, u, T)
and positions of the shockrs and heatrh fronts. As expected,T has the smallest errors. The
values in the last column display second-order convergence, albeit to 4.171 instead of to
4.1746, the result from the ODE integrations. In any case, 200 cells are sufficient to obtain
an accuracy better than 0.1% forT . Forρ andu, the errors are larger, but as stated above,
these variables are sharply peaked and furthermore, since the numerical values are only
cell averages, they are necessarily smaller. The frontsrs and heatrh also converge. By any
measure, our simulations not only converge, they agree nicely with the ODE integrations.

We next demonstrate the code’s performance on a 3D simulation of the same problem.
We discretize the unit cube(0≤ X,Y, Z ≤ 1) into 104 initially uniform cells per dimension
(over 1.1 million cells).6 The point explosion is simulated by loading 235/8 units of energy
into the corner cell next to the origin. All other cells are initialized with a small pressure.

6 We use 104 since it is divisible by 8, thereby allowing us to run in parallel on 128 processors by subdividing
the domain into blocks of size 13× 26× 26.
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FIG. 2. Self-similar point explosion problem. Density vs. spherical radius. Curve A is a 1D, 100-cell spherical
result. Curves B–D are lineouts of the 3D, 1043-cell Cartesian simulation.

We use Gaussian quadrature to compute the proper cell-averaged initial density. Symmetry
is imposed at theX = 0, Y = 0, andZ = 0 planes. The simulation is done in ALE mode;
grid points move at 3/10 of the Lagrangian speed.

Our 3D results are summarized in Figs. 2 and 3 in which we display lineouts ofρ andT
at the final timet = 0.05146. For comparison, the figures also contain results from a 1D,
spherical coordinate run using 100 cells. The 3D lineouts are taken along three different
directions in order to show near-sphericity of the waves. Figure 2, which displaysρ, shows
that although the 3D Cartesian run does not attain the same spherical maxima, the shock
locations are nearly coincident. Figure 3, which displaysT , is less satisfactory. The 3D
central values are somewhat higher than the 1D run and the heat front propagates slightly
further along the lineZ = 0, Y = X and the lineX = Y = Z, i.e., diagonally across the
mesh. However, along theX-axis, T is nearly identical to the 1D run; both fronts are at
r ≈ 0.92. At first blush, sinceT ∝ e andρe is the internal energy density, and since the
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FIG. 3. Self-similar point explosion problem. Temperature vs. spherical radius. Curve A is a 1D, 100-cell
spherical result. Curves B–D are lineouts of the 3D, 1043-cell Cartesian simulation.

3D temperature is generally larger than the 1D result, one might opine nonconservation of
energy. This is false, since the code conserves total energy. In fact, at the end of the run, we
observe that energy is conserved to 10 decimal places! It then appears that a good measure
of error would be to compute the ratio of the internal to total energy. Unfortunately, at the
time of this writing, we do not know the “analytic” value. For the record, in our 3D run, at
t = 0.05146, (∫

ρe dV

)/(∫
ρE dV

)
= 0.7436.

To summarize, considering the extreme nonlinearity of the problem, our simulations
generally agree with the independent ODE integrations.

3. PHYSICS PACKAGES

Some of the algorithms for the packages listed in Section 2 have been presented previ-
ously. Reference [2] describes the hydrodynamic scheme. The heat conduction module and
the laser package are discussed in [1] and [14], respectively. Control of a run, i.e., initializa-
tion and what makes its execution transparent for uniprocessors as well as massively parallel
systems is delineated in [15]. A discussion of the parallelization of the modules is found in
[16] while a parallelization scaling study appears in [17]. In this section, we describe the
packages that have not been discussed elsewhere. We first consider the calculation of ma-
terial properties. Then we describe and analyze the frequency-averaged radiation diffusion
package. As a run progresses, the code tallies the conserved quantities: mass, momentum,
and energy. Section 3.3 describes the tally for diffusion equations with Dirichlet boundary
conditions.
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3.1. Material Coefficients

We now describe how to compute the material coefficients needed by the other physics
packages. The starting point is the equation of state (EOS) for mixed materials which, when
given values of two thermodynamic variables, returns the other two, typicallye(ρ, T) and
p(ρ, T). Recalling the steps described in Section 2, after the hydrodynamic step, for each
cell we computeT (1)

c using Eq. (5), other material properties such ascv using Eq. (6), and
the Planck and Rosseland mean opacitiesκP andκR.

Our EOS module allows mixtures. The third argumentf in Eqs. (5) and (6) is a vector of
mass fractions whose individual componentsfi = mi /m, wheremi andm are respectively
the mass of materiali and the total mass in the cell. If a cell is composed of only one
material, the EOS call (done cell by cell) branches to the appropriate table for that material.
If the cell contains a mixture, we assume that the sum of the individual volumes equals the
cell volume, i.e.,

∑
i Vi = V . If this equation is divided by the masses we obtain∑

i

fi /ρi = 1/ρ,

whereρi is the individual material density. We also require that all the materials within
a cell be at a common pressure and temperatureT (1)

c . This assumption, while not hydro-
dynamically correct, is justified by step 4. (In ICF the high thermal diffusion coefficients
homogenize the temperature discrepancies within a cell.) Once theρi are computed, average
material properties such ase, cv, κP, andκR are given by equations of the type

ḡ =
∑

i

fi gi , (13)

wheregi = ei , cv,i , κP,i , or κR,i .7

For the laser deposition and heat conduction packages, we need the average charge state
Z∗, the free electron densityne, and the Coulomb logarithm ln3. These quantities are
computed using the Thomas–Fermi average atom model [18] in which the material within
the cell is said to consist of atoms whose averages are also obtained by Eq. (13) where now
gi = 1/Ai , Zi /Ai , Z2

i /Ai andZi ln Zi /Ai define the average atomic numberĀ, chargeZ̄,
etc.

We computeZ∗, ln3, and the thermal (diffusion) coefficientDe using formulae from
More [21] with modifications suggested by Zimmerman [22]. The average chargeZ∗ and
Ā are used to compute the ion and free electron densities

ni = ρA/[ Ā(1+ Z∗mei)] andne = Z∗ni ,

whereA is Avogadro’s number andmei is the ratio of the electron and proton masses.
To conclude this section, we present plots ofZ∗ and the thermal conductivityDe, and

just like Lee and More [23] (Fig. 4, p. 1278) we examine aluminum. Figure 4 displays
De/T5/2 as a function ofT for variousρ. (We plot the ratioDe/T5/2 in order to remove
the analytic dependence on the temperature power.) In Fig. 5, we displayZ∗ for the same
density and temperature range.

7 In the absence of spectral information about the individual opacities, Eq. (13) is also used to computeκR.
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FIG. 4. Aluminum De/T5/2 vs.T for variousρ. Units: De in erg/(cm s keV),T in keV.

In order to avoid superthermal electrons, we limitDe so that the flux|De∇T | does not
exceed

Fe,max= ne kT
√

8kT/(πme),

whereme is the electron mass.

3.2. Radiation Transport

Ignoring effects such as the convection of radiation, radiation pressure, Compton scat-
tering, etc., the relevant equations are

∂t Er = ∇ · Dr∇Er + cρκP[B(T)− Er ]

ρcv∂t T = −cρκP[B(T)− Er ].
(14)

In Eqs. (14),Er is the energy density of the radiation field;Dr is defined using the Rosseland
mean free path,

Dr = c`R/3; (15)

κP is the Planck averaged opacity; and the frequency averaged source function

B(T)
.= (4σ/c)T4 =

∫ ∞
0

dν Bν(T),

whereσ = 2π5k4/15h3c2 is the Stefan–Boltzmann constant, andBν(T) is the Planck func-
tion.
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FIG. 5. Average chargeZ∗ vs. log(T ) with T in keV for variousρ.

Equations (14) are solved using a simplification of the partial temperature scheme de-
scribed in [5]. If E0

r andT0 denote the variables to be time advanced,8 we first linearize
B,

B(T) = B0+ B0′(T − T0), (16)

where

B0 = B(T0) and B0′ = (d B/dT)|T=T0.

Using backward Euler temporal differencing, givingEr , T , and B a point centered, FE
representation; then multiplying the second of Eqs. (14) by a test functionφi , integrating;
and lumping the integrals, the temperature change at the points is

Ti − T0
i = Ki

(
Er,i − B0

i

)/(
Ci +Ki B

0′
i

)
, (17)

where

Ci =
∫
Ä

dV φi (ρcv)c and Ki = c1t
∫
Ä

dV φi (ρκP)c, (18)

where the subscriptc denotes variables which are constant over the cell (zone) and where
the subscripti denotes the value at thexi vertex.

8 According to the definitions of Section 2,T0 is T (4)
i , the point-centered temperature after heat conduction.
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If Eq. (17) is substituted into Eq. (16) and the result substituted into the first of Eqs. (14),
we obtain the scalar equation forEr,i ,

Vi
(
Er,i − E0

r,i

) = −∑
j

Di j Er, j + Li
(
B0

i − Er,i
)
, (19)

where

Di j = 1T
∫
Ä

dV∇φi · Dr∇φ j , Vi =
∫
Ä

dVφi , and Li = CiKi
/(
Ci +Ki B

0′
i

)
.

(20)
Equation (19) is a FE discretization of a diffusion equation with an explicit sourceB0 and
a coupling coefficientLi . To summarize, the scheme consists of computingLi , solving
Eq. (19) forEr , and computingTi using Eq. (17).

To prove stability, note that sinceLi and B0
i are positive, it follows that if the grid is

sufficiently fine, Eq. (19) leads to a linear system with an M-matrix. Hence, ifE0
r,i ≥ 0,

then Er,i ≥ 0. Using the definitions forB0
i and B0′

i , Eq. (17) may be used to show that
if Er,i ≥ 0 andT0

i ≥ 0, thenTi ≥ 0. Thus, the scheme yields nonnegativeEr andT . To
derive an upper bound forTi , note that Eq. (17) may be manipulated to yield

Ti ≤ T0
i + Er,iKi

/(
Ci +Ki B

0′
i

)
. (21)

Thus,Ti is bounded by a linear combination ofT0
i andEr,i . The latter is itself bounded by

maxi (Er,i ) which may be estimated using the maximum principle for elliptic equations.
We now analyze the scheme for the two limits, large1t and largeKi . In the former, the

left side of Eq. (19) vanishes andEr,i satisfies a nonhomogeneous Poisson equation which
imposes the usual bounds onE, and the manipulations leading to Eq. (21) yield

lim
1t→∞

Ti =
(
3B0

i + Er,i
)/

B0′
i . (22)

For the analysis of largeKi , if the diffusive term in Eqs. (14) is ignored, the scheme reduces
to backward Euler differencing of two coupled ODEs, a method known to be stable. In
terms of the matter and radiation energies, the result is

lim
κ→∞ Er,i = αE0

r,i + (1− α)B0
i ,

lim
κ→∞ Ci Ti = βCi T

0
i + (1− α)Vi E

0
r,i ,

where 0< α = Vi /(Vi + Li ) < 1, and 0< β < 1. It is also easy to show that the scheme
is conservative, i.e., whatever energy leaves one field goes to the other.

Our scheme has the drawback that in the limit of large1t , E 6= B(T) and the solution
depends on the previous state. To see this, note that as1t →∞, Eq. (19) shows thatEr

depends on the old sourceB0. Also, from Eq. (22) we obtainE ≈ [4(T/T0)− 3]B0. (It is
trivial to show thatT/T0 ≥ 3/4 which also shows the maximum drop thatT may incur.)
EnsuringE ≈ B(T) for large1t could be addressed by introducing nonlinear Newton
iterations at each time step, but this would need to be the subject of another paper.

The fact that when1t is large the new state depends on the old leads to erroneous
answers in some problems. Specifically, the new temperatureTi can be unphysically large.
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If 1t is large, the worst error arises if the denominator of Eq. (17) is replaced byKi B0′
i ,

which is valid whenever

Ci ¿ Ki B
0′
i . (23)

To analyze Eq. (23), we note that ife is the matter specific energy, thencv ≈ e/T and
B′ ≈ B/T . Hence, Eq. (23) implies

ρe0/T0¿ c1tρκPa(T0)4/T0, (24)

where the radiation constanta = 1.37 · 1014 erg/cc keV4. For a monatomic gas,e= cv T ,
wherecv ≈ 1015 erg/g keV. Thus, Eq. (23) implies

1.82ρ/(T0)3¿ (c1t)(ρκP). (25)

This condition is obviously problem dependent. The right side is the ratio of the distance
radiation travels during the time cycle(c1t) to the mean free path 1/(ρκP). This ratio may
indeed be large, especially if we recall that approximating radiation transport by diffusion
is valid only for short mean free paths. In any case, assuming Eq. (23) holds, Eq. (17) has
the form

Ti = T0
i +

(
Er,i − B0

i

)/
B0′

i .

It follows that if T0
i is negligibly small, Eq. (22) becomes

lim
1t→∞

Ti = Er,i
/

4a
(
T0

i

)3
, asT0

i → 0.

This is unphysical if the problem involves radiation flow into cold matter since for small
enoughT0, the new emission termaT4 may be greater thanE. Hence, at that point, the
matter is cooled rather than heated. However, we stress that the limitT0→ 0 is incompatible
with Eq. (25). Hence, the above error should rarely occur for real problems. Nevertheless,
it can arise for problems such as the one described in Section 3.2.1 in whichcv also has a
T3 dependence. In that case, the left side of Eq. (25) depends only onρ.

Before concluding this section, we note that since diffusion is characterized by infinite
propagation speeds, a flux-limiter is required. To this end, the coefficientDr is modified
so as to keep the speed of propagation of the radiation energy flux comparable toc. Our
modification replaces̀R (see Eq. (15)) with

`′R = `R/[1+ (2`R/3)(|∇Er |/|Er |)]. (26)

Equation (26) refers to cell-centered variables, i.e.,

|∇Er |2c =
(∫

c
dV|∇Er |2

)/∫
c
dV,

where the gradient is computed using the finite element representation ofEr in the cell,

Er (x) =
∑

i

φi (x)Er,i ,
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and the cell average|Er | = Er,c is obtained by applying Eq. (4) toEr . The flux-limiter is
effective in regions of largèR and in such cases the flux becomes

lim
`R→∞

−Dr∇Er = −(c/2)
(∣∣E0

r

∣∣/∣∣∇E0
r

∣∣)∇Er ,

where the superscript denotes a temporally explicit correction. In the limit of small1t the
flux reduces tocEr /2.

In the following sections, we consider two problems which test the radiation module.
The first stresses the coupling betweenEr andT ; the second tests the flux-limiter.

3.2.1. Pomraning problem.We consider a problem proposed by Pomraning [24], in
which an initially cold half space of material(0≤ Z) is irradiated on one side. For this
problem, in Eqs. (14) and (15), we fix

ρ = κ = `R = 1

and letcv have the dependence

cv = cv,0T3, cv,0 = const. (27)

This problem is a stringent test of the scheme since we linearize bothB and the matter
energy change by writing1e= cv(T0)1T .

The problem has two parameters,ε andFinc. The first is defined by the ratio

ε = 16σ/c cv,0.

In the simulation, we use

ε = 0.1.

The second parameterFinc is used in the boundary condition imposed atZ = 0,

(c/2)Er − Dr ∂Z Er = 2Finc. (28)

If we define Einc = 4Finc/c and setEinc = 1, then Eq. (28) is of the form described in
Eq. (32) wherea = b = c/2.

We present results in Fig. 6 in which we plotEr andB(T) as functions ofZ for various
values of the normalized time

τ = εcκPt.

The results show how the termsEr and B(T) equilibrate. Atτ = 0.001, the two fields
differ significantly; atZ = 0.01, Er > 1000B. However, byτ = 10.0, Er ≈ B(T). These
results are in agreement with those published by Su and Olson [25] (p. 350, Fig. 3).

The simulation uses 100 cells with equal ratio grid spacing. The first cell (atZ = 0)
is of width1 = 0.01 and the successive widths increase by 5%. Thus, the computational
domain is 0≤ Z ≤ 26.10 and for the last cell1 = 1.252. The simulation takes 334 time
cycles to reachτ = 10.38. As the run progresses,1τ increases. Initially,1τ = 3.0 · 10−11;
at the end,1τ = 0.657. The code increases the time step by 10% if the fields, when
they are above certain base values, do not change appreciably. In this problem, we use
Er,base= B(T)r,base= 10−5.
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FIG. 6. Pomraning promblem;Er (solid lines) andB(T ) (dashed lines) vs.Z for variousτ .

To further demonstrate the accuracy of the scheme, in Table III we display the percentage
of relative errors from our results compared to the tabulated values of [25] (p. 346, Tables 1
and 2). Table III shows that our result compares very well except whereB(T) has relatively
low energy.

In order to demonstrate that the scheme does not introduce any anomalous diffusion as
we mix cell- and node-centered methods, in Table IV we compare ourB(T) values to those
of [25] (p. 346, Table 2) at the leading edge of the front which we define as the position
whereB(T) exceeds 10−4. In Table IV, we evaluateB(T) by interpolating the result at the
mesh points enclosing the desired value of the coordinatex = √3κZ used in [25]. The

TABLE III

Pomraning Problema

τ er,0 em,0 er,1 em,1

0.001 0.13 — — —
0.01 0.21 23.43 20.0 —
0.1 0.20 6.98 0.64 21.18
1.0 0.12 1.10 0.20 0.28

10.0 0.16 0.16 0.40 0.42

a Percentage errors 100× ( f/ fe− 1) where f and fe are our computed
results and the exact results (from [25]), respectively.er,x and em,x are the
errors in the radiation and matter energies at positionx = √3κZ. Thus, for
τ = 0.001, atZ = 0, ourEr differs by only 0.13% from the tabulated results of
Su and Olson. Because of the accuracy cited in [25], comparison is made only
at positions where the function value exceeds 10−4.
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TABLE IV

Pomraning Problema

τ x Bsu B

0.01 0.5 1.2 1.6
0.1 2.5 3.5 3.9
1.0 7.5 2.8 3.0

10.0 15.0 9.8 12.1

a Comparion ofB(T) at positionx = √3κZ, at the leading
edge of the wave (see text).BSu andB are values of exact (from
[25]) and computed results multiplied by 104, respectively.

Table II results belie the accuracy attained, since upon closer examination we note that our
value whereB ≈ 10−4 is within a mesh width of the position given in [25]. We also note
that the results in [25] are guaranteed to be correct to an accuracy of only 10−4.

Before ending this section, we return to the discussion in Section 3.2 regarding the
possibility of obtaining anomalously high temperatures when radiation propagates into
cold material if1t is large. Since herecv ∝ T3, Eq. (24) reduces tocv,0¿ c1tκP, and it
is easily checked that the parameters for this problem satisfy the inequality. To illustrate
the difficulty, if t is normalized byτ , for the Pomraning problem Eqs. (14) become

∂r E = ∇ · D∇E + (1/ε)[B(T)− E]

∂r e= −(1/ε)[B(T)− E],
(29)

whereD = 1/(3ε), e= B/ε, andB = aT4. In deriving Eqs. (29), we usedκP = ρ = 1.
Hence,e= ρe is now the internal energy density. The normalized timeτ = εcκPt .

In the Pomraning problem, which simulates radiation propagating into cold material,
B ≤ E. Since Eqs. (29) imply thatε is an approximate time for the fields to equilibrate,
it is interesting to examine what happens at very early times using the backward Euler,
semiimplicit scheme described in Section 3.2. Table V displays the exchange term−(Bi −
Ei ) at the first few mesh points. A nonuniform mesh is used;1z0 = 0.01, and fori > 0,
1zi = 1z0 (1.05)i . The table shows that for1τ0 = 10−8, at the incident edge,B0 > E0,
violating physical expectations. For larger1τ0 the result is worse, e.g., if1τ0 = 10−6, then
after one cycle−(B0− E0) = −1.2 · 1015. However, we note that the difficulty arises only
if the initial time step is too large. The results in this section use1τ0 ≈ 10−10, but1τ is
allowed to increase over the course of the run. Eventually,1τ grows by over 10 orders
of magnitude.

TABLE V

Pomraning Problema

1τ0 τ i = 0 i = 1 i = 2 i = 3 i = 4

1.e-8 1.e-8 −1.5e-1 3.2e-8 9.6e-13 2.6e-16 6.2e-20
1.e-9 1.14e-8 1.1e-5 2.4e-9 3.4e-13 3.6e-17 3.1e21
1.e-10 1.09e-8 1.1e-5 2.0e-9 2.4e-13 2.1e-17 1.4e-21

a Energy exchange term(Ei − Bi ). First and second columns denote initial time step
and current time, respectively.
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FIG. 7. Flux-limited diffusion;T4
r vs.Ralong (A)Y = 0 plane, (B)X = 0 plane, and (C)X = Y planes.

3.2.2. Flux-Limiter. In order to show the effectiveness of the limiter, we setκP = 0
and`R = 1000.0 and solve Eqs. (14) in the domain 0≤ X, Y ≤ 1. We define the radiation
temperatureTr using the relationship

Er = (4σ/c)T4
r .

We initialize withTr = 10−6 everywhere, and at the origin fixTr = 1.0. Symmetry condi-
tions are imposed alongX = 0 andY = 0. Along X = 1 andY = 1, we impose(c/2)Er +
Dr ∂Er /∂n = 0 which allows radiation to stream out of the problem.

We run the simulation untilt f ≈ 0.5/c = 1.67 · 10−11 s. At this time,Er should not
extend beyondR= √X2+ Y2 = 0.5. In the absence of flux-limiting, min(T4

r ) = 0.99
over the entire domain, i.e., the cavity fills with radiation. However, when the flux-limiter
is on, we obtain the results shown in Fig. 7 which displaysT4

r along three planes. Although
the limiter does not stop all radiation from moving faster thanc, at R= 0.5 the amount of
radiation filling the cavity beyondR= 0.5 is only 10−3%.

If in Eq. (26) the number 2 is replaced by another numbera ≥ 1, the effect for small
1t reduces the flux tocEr /a and the consequence of this change is evident in Fig. 7 from
the result atR= 0.5× (a/2). For example, ifa = 1, Fig. 7 shows thatEr = 8× 10−3 at
R= 0.25.

The limiter is insensitive to grid distortions. In Fig. 8 we overlay contours ofT4
r on top

of a mesh constructed by giving random displacements to uniformly spaced points. Note
how well circular symmetry is maintained.

3.3. Boundary Flux Accumulation

In this section we describe the procedure that accumulates fluxes at the problem boundary.
Consider the diffusion equation

g∂t u = −∇ · F, (30)



102 SHESTAKOV, MILOVICH, AND PRASAD

FIG. 8. Flux-limited diffusion. Contours ofT4
r for levels (A) 0.1, (B) 0.01,. . . (H) 10−8.

whereF = −D∇u. In our applications, such equations have units of (energy density)/time.
In the heat conduction equation,g = ρcv andu = T , while for radiationg = 1 andu = Er .
In the following discussion we assumeg = 1.

Equation (30) is in conservation form. Integrating over all space and time and defining
the energy

U (t) =
∫
Ä

dV u(x, t)

yields

U (t) = U (0)−
∫ t

0
dτ
∮
∂Ä

d A F · n̂, (31)

wheren̂ is the outward normal. Boundary conditions for Eq. (30) are either of Dirichlet or
mixed type. In the former, on some portion of the boundary∂Ä, u = ud whereud is known.
In the latter type, the boundary condition is of the form

au− F · n̂ = b, (32)

wherea, b ≥ 0.
In the FE discretization of Eq. (30) a mixed boundary condition poses little difficulty

since the boundary integral arises naturally. Equation (32) is implemented by discretizing
over the faces that constitute∂Ä. The discretization reduces to computing∮

∂Ä

d A(au− b)

over each boundary face. Hence, it is easy to determine the amount of energy that flows
through∂Ä.
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Calculation of the boundary flux due to Dirichlet conditions is not as straightforward and
is done as follows. First, since Dirichlet conditions are imposed on points, it is convenient
to define the collection of all mesh points as

X = X1 ∪ Xd,

where, ifx is a mesh point,

X1 = {x : u(x) is unknown} and Xd = {x : u(x) = ud(x)}.

Thus, we expressu as a sum of where it is unknown and where it has Dirichlet data,

u(x) =
∑
xi∈X1

φi (x)ui +
∑

xd∈Xd

φd(x)ud.

For the FE discretization of Eq. (30), the temporal derivative is discretized as(u−
u0)/1t , and the equation is multiplied by1t φi and integrated overÄ. After lumping the
lower order term, this yields(∫

Ä

dV φi

)(
ui − u0

i

) = −1t
∫
Ä

dV φi∇ · F, (33)

whereφi is centered on somexi ∈ X1.
Without loss of generality, we assume that if there is a mixed boundary condition, it is

homogeneous, i.e.,a = b = 0 in Eq. (32). Then, after integrating by parts we obtain∫
Ä

dV φi∇ · F =
∑
xj∈X

∫
Ä

dV D∇φi · ∇φ j u j , (34)

and we stress thatxi ∈ X1 andxj ∈ X , i.e., we solve equations only on mesh pointsxi ∈ X1.
If Eq. (34) is substituted into Eq. (33) and the result summed over allxi ∈ X1, we obtain

a discretized version of the energy change over a time step. However, the result looks more
natural if we add the null quantity∑

xd∈Xd

{∫
Ä

dV φd
[(

ud − u0
d

)+ (u0
d − ud

)]}
.

If we now define the discrete analogue of the total energy

Ũ
.=
∑
xj∈X

∫
Ä

dV φ j u j ,

and letŨ0 represent the energy at the previous time level, we obtain the energy change

Ũ − Ũ0 =
∑

xd∈Xd

∫
Ä

dV φd
(
ud − u0

d

)+ Fd, (35)

where

Fd = −1t
∑
xi∈X1

∑
xj∈X

∫
Ä

dV D∇φi · ∇φ j u j (36)

is the energy that enters across that portion ofÄd where we are given Dirichlet data.
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The energy change is composed of two terms. The first term on the right side of Eq. (35)
represents the temporal change of the Dirichlet data. The second termFd vanishes ev-
erywhere except on cells which have a pointxd ∈ Xd. Hence, if we defineÄ = Ä1 ∪Äd

where

Ä1 = {cells : all its verticesxi ∈ X1}
and Äd = {cells : with at least one vertexxd ∈ Xd},

thenFd reduces to integrating only over the cells inÄd and is computed after the solution is
known since it involves values ofu on unknown points. The computation ofFd requires sav-
ing (or recomputing) the contribution to the matrix elements that stemmed from discretizing
the diffusion operator over the cells∈ Äd.

Finally, if the location of Dirichlet data changes from one time level to another, Eq. (35)
still holds if the setsXd andÄd define the points and related cells over the current time cycle.

4. ICF CAPSULE IMPLOSION

To demonstrate the efficiency and robustness of the coupling scheme, we consider a
problem of interest in ICF and simulate the implosion of a NIF capsule which consists of
a nearly vacuous inner region enclosed by two spherical shells. The capsule dimensions,
materials, and initial densities are given in Table VI. The material EOSs are given by the
LANL SESAME tables [26]. Since the tables do not have data at low temperatures, we
initialize with T = 0.007 keV.

The simulation uses the hydrodynamic, heat conduction, and radiation transport packages
and is run in the Lagrangian mode. Since the code convects the mass fractions [2], there
is some “mixing” of materials across the original Be–D interface (limited to 2–3 cells).
Material properties, e.g.,κP, of cells with pure Be or pure D are calculated by EOS
function calls. For the mixed cells, we use the technique described in Section 3.1. In the
heat conduction module, the conductivity is given by the Lee & More formulae [21, 23]
with modifications suggested by G. Zimmerman [22].

As boundary conditions, for the hydrodynamics, we setp = 58.22 GPa on the surface
of the capsule which corresponds to the pressure of Be atρ = 1.85 andT = 0.001 keV.
For the heat conduction package, a symmetry condition is imposed, and for the radiation
we use Eq. (32) wherea = c/2,u = Er , F is the radiative flux,b = cEs/2, andEs is set in
accordance with a radiation temperatureTr = 0.16 keV. The boundary conditions simulate
a capsule inside a hohlraum kept at constantTr .

TABLE VI

NIF Capsulea

Dimensions Material Density

r ≤ rg = 0.1 Deuterium 10−3

rg ≤ r ≤ r f = 0.11 Deuterium 0.21
r f ≤ r ≤ ra = 0.121 Beryllium 1.85

a Lengths in cm, density in g cm−3.
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FIG. 9. 3D domain of ICF capsule implosion problem. Shading designates processor numbers. Grid consists
of 5,104 tetrahedra, 1,246 points, and 10,915 faces; radial discretization uses 10 cells in the gas, 12 cells for the
fuel, and 11 for the ablator.

The computational domain consists of an icosahedral wedge discretized by an unstruc-
tured tetrahedral grid generated by the LaGriT code [27] and is decomposed into 64
subdomains using METIS [28]. The initial mesh is displayed in Fig. 9.

The simulation consists of a typical (albeit not well tuned) “indirectly driven” implosion.
Energy is deposited on the outer surface of the Be ablator surface which heats up, expands,
and creates an imploding shock. The shock traverses first the ablator, then the fuel (where
initially ρDeuterium= 0.21), and later the gas. At both interfaces,r = r f and r = rg, the
shock travels from a high-density region to one of lower density, a scenario for a possible
Richtmyer–Meshkov instability. In the ablator, the radiation source is delivered to a thinning,
moving spherical surface, a condition ripe for Rayleigh–Taylor instabilities as the tenuous
hot outer region pushes on the denser shocked ablator. In Figs. 10, 11, and 12 we present
side-on views ofρ, T , and the radiation temperatureTr att = 8 · 10−9 s when the imploding
shock has reflected off the origin. Only the central region is displayed.

The figures are characteristic of a capsule implosion. The thin, imploding shell is evident
in Fig. 10 which highlights the high-density region. Figure 11 shows thatT = 0.716 keV
near the origin. Outside the central region, out to the ablation front,T is relatively cold.
Beyond the ablation front,T ≈ 0.158 keV due to its coupling toTr . In Fig. 12 we see
the ablation front, outside of whichTr = 0.158 keV. Inside the front,Tr is relatively cold,
approximately 0.018 to 0.03 keV, while in the central regionTr ≈ 0.075 keV due to its
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FIG. 10. ICF capsule implosion; side-on view of density;t = 8 · 10−9 s.

coupling toT . All three figures clearly display the near spherical symmetry of the implosion.
Figure 13 displays lineouts of the results along theZ-axis.

In order to demonstrate that the simulation is qualitatively converged, we make an addi-
tional simulation while running the code in “1D” spherical mode, i.e., using only one cell in
the azimuthal and polar directions. The 1D run uses slightly finer zoning; Fig. 14 displays

FIG. 11. ICF capsule implosion; side-on view of matter temperature;t = 8 · 10−9 s.
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FIG. 12. ICF capsule implosion; side-on view of radiation temperature;t = 8 · 10−9 s.

results att = 8 · 10−9 s. Although there are obvious differences between Fig. 14 and the
results in Figs. 10–13, the simulations generally agree, especially noting that the meshes
are coarse, and that the 3D results are obtained while running in Cartesian coordinates on
a tetrahedral grid while the 1D results use spherical coordinates. In Fig. 14, we also see a

FIG. 13. ICF capsule implosion. Lineout of 3D simulation along theZ-axis. Curve A isρ/10 (g cm−3/10),
curves B and C areT andTr , respectively (keV), curve D is−vz/108 (cm s−1/108), and curve E is the Be mass
fraction divided by 2;t = 8.0 · 10−9 s.
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FIG. 14. ICF capsule implosion, 1D run. Curve A isρ/10 (g cm−3/10), curves B and C areT andTr , respec-
tively (keV), curve D is−vr/108 (cm s−1/108), and curve E is the Be mass fraction divided by 2;t = 8.0 · 10−9 s.

thin, imploding shell (curve A), a high centralT (curve B), and inside the ablation front at
r ≈ 0.06, a relatively coldTr (curve C). The large negative velocity depicted in Curve D
shows that there is still a great deal of imploding kinetic energy. Finally, curve E is the Be
mass fraction, initially a step function centered atr = 0.11 cm.

5. CONCLUSION

We have presented an overview of a 3D, unstructured-grid code written to simulate
ICF experiments. Special attention has been paid to coupling the seemingly incompatible
cell-centered hydrodynamic and point-centered diffusion packages. Mixing the two types
of centerings avails us of the best methods for the individual modules. The coupling has
proved robust, even on difficult problems such those described in Sections 2 and 4. The
3D implosion simulation maintains the expected symmetry of the solution even though the
underlying grid has small scale asymmetries.

APPENDIX: ORDERING OF PHYSICS PACKAGES

In this section we discuss why the time cycle evolves the packages in the order described
in Section 2. Our choice is motivated by a desire to obtain the correct answer in the limiting
case that the physics equilibrates at the end of the time cycle. However, before discussing this
limit, we note that codes such as ours must simulate at least two processes: compressible
hydrodynamics and energy transport. The former is described by the (hyperbolic) Euler
equations for the conservation of mass, momentum, and energy. For the latter, there are
several possibilities. A detailed treatment requires separate ion and electron temperatures
and an additional system governing the flow of radiation energy and its coupling to the matter
(electrons). Typically, ion and electron energy fluxes are modeled by Fick’s law—energy
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flows down the respective temperature gradient—which leads to diffusion equations. For
radiation, a complete description of an intensity dependent on position, time, frequency, and
propagation direction is very expensive. Thus, simplifications are made; the most common
(and viable for a 3D code) is to assume near isotropy, i.e., ignore directionality. This leads
to diffusive transport. Discretizing the frequency spectrum into a number of groups leads to
one equation per group, while averaging over the entire spectrum gives rise to the diffusion
equation for the radiation energy densityEr .

To continue the simplification, the ion heat conduction equation is either ignored (since
its diffusion coefficient is less than the electron’s by a factor of

√
mi /me [19]) or averaged

with the electron. This leads to the “2T” model with diffusion equations forTe and Er .
In some cases, the matter heat conduction is entirely ignored, matter andEr are assumed
to be tightly coupled, i.e.,Er ≈ B = aT4, and the energy transport is expressed in terms
of a single diffusion equation. The plasma is thus modeled by the Euler equations with
heat conduction—the system considered by Reinicke and Meyer-ter-Vehn [11]. Hence,
we first motivate how to advance a system consisting of hydrodynamics, heat conduction
(diffusion), and an external energy source such as a laser.

The equilibrium limit is obtained if the processes are ordered so as to do the slowest
one first. In our applications, since sound speeds are relatively slow, the hydrodynamics
package is called first. After the hydrodynamics, which moves material through the mesh,
we calculate material properties such as the opacities and the specific heat. In a strictly
Lagrangian code, material properties could be calculated first. However, with an Eulerian
or ALE hydrodynamic module, material properties are calculated after the matter has moved
to its new position. Since laser energy deposition depends on the electron number density
ne, that package follows the calculation of material properties. The laser package cannot
be placed at the end of the time cycle since such energy deposition is very localized and
enormously raises the temperature in a small region. Thus, processes such as heat conduction
and radiation come last in the time cycle since they redistribute the energy source. This
procedure implies an additional subtlety. Since the equations are nonlinear, one might
propose that each process should be solved either fully nonlinearly or if advanced using
“lagged” material properties, these properties should be recomputed after each process.
For the laser, this implies recomputing properties such as opacities and specific heats after
depositing the laser’s energy. This leads to coefficients (used by subsequent modules) that
are wildly out of equilibrium. Thus, in a code with only hydrodynamics, a laser, and heat
conduction, we advance them in that order. (Properties such as the pressure, since they
are needed by the hydrodynamics, are computed at the end of the time cycle.) The laser
package comes after the hydrodynamics to avoid anomalous motion due to the localized
energy deposition.

We now discuss the ordering of the two diffusion packages: electron heat conduction and
(diffusive) radiation transport. Both are flux-limited; the former limits to the thermal speed
(≈√kT/me), while the latter to the speed of lightc. Thus, ordering by the maximum speed
of propagation places the radiation last in the time cycle. Another reason for diffusingT
beforeEr stems from comparing the diffusion coefficients of the set of equations that are
advanced after the laser package,

ρcv∂t T = ∇ · De∇T −K(B− Er )+ Se

∂t Er = ∇ · Dr∇Er +K(B− Er )+ Sr , (A.1)
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whereB = aT4 is the Planck function,K = cρκ is the electron–radiation coupling coeffi-
cient, and theSare the explicit sources, e.g.,Se is the energy deposited by the laser.

In most problems,K is very large. Indeed, the derivation that deletes the radiation’s
dependence on propagation angle, i.e., that assumes near isotropy, assumes tight coupling
to the matter. That is, to a good approximation,Er ≈ B. Of course, one approach is to solve
the entire system (A.1) simultaneously. Unfortunately, since we require implicit temporal
differencing, this leads to linear systems of order 2N, whereN is the number of points.
Since the most we wish to tackle is systems of orderN, we need to choose which to diffuse
last,T or Er . Heuristically, because of the faster propagation speed,Er should be last. The
following argument affirms that choice.

We assign to last place in the time cycle the most equilibrating (mathematically, the
stiffest) process, i.e., the one with the largest diffusion coefficient. Before comparing them,
we normalize the coefficients. Since we measure temperature in keV, in (A.1),De andDr

have units of erg/(cm s keV) and cm2/s, respectively. The electron diffusion coefficient is
[19]

De = ξ k(kT)5/2

m1/2
e Ze4 ln3

= ξ · 1.0 · 1020 T5/2

Z ln3

(
erg

cm s keV

)
, (A.2)

whereξ = O(1) and ln3 is the Coulomb logarithm. The radiation coefficientDr = c`R/3
where`R is the Rosseland-averaged mfp. The assumptionEr ≈ aT4 yields a radiation flux
−D′r∇T where

D′r = (4/3)ac̀ RT3

anda = 1.37 · 1014 (erg/cm3 keV4). We now include the temperature dependence of`R.
Assuming an opacity given by only free–free transitions [20],

`R = 2.6 · 1049 T7/2

Z2n+ne
cm.

Expressingne = Zn+ andn+ = ρ/Amp, whereA is the atomic weight andmp is the proton
mass, yields

D′r = 3.9 · 1026 A2

ρ2 Z3
T13/2

(
erg

cm s keV

)
. (A.3)

Combining (A.2) and (A.3) yields the ratio,

D′r
De
= 3.9 · 106

(
A

Z

)2( ln3

ξ

)(
T4

ρ2

)
. (A.4)

We now reason that sinceξ = O(1), A/Z = O(1), and ln3 ≥ 2, the factor multiplying
(T4/ρ2) is of order 8· 106. Thus, for high temperatures and low densities, radiation diffusion
dominates.
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